Fast construction of hierarchical matrix representation from matrix-vector multiplication

نویسندگان

  • Lin Lin
  • Jianfeng Lu
  • Lexing Ying
چکیده

We develop a hierarchical matrix construction algorithm using matrix–vector multiplications, based on the randomized singular value decomposition of low-rank matrices. The algorithm uses OðlognÞ applications of the matrix on structured random test vectors and Oðn lognÞ extra computational cost, where n is the dimension of the unknown matrix. Numerical examples on constructing Green’s functions for elliptic operators in two dimensions show efficiency and accuracy of the proposed algorithm. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Matrix Approximation for Kernel-Based Scattered Data Interpolation

Scattered data interpolation by radial kernel functions leads to linear equation systems with large, fully populated, ill-conditioned interpolation matrices. A successful iterative solution of such a system requires an efficient matrix-vector multiplication as well as an efficient preconditioner. While multipole approaches provide a fast matrix-vector multiplication, they avoid the explicit set...

متن کامل

Preprint ANL/MCS-P5112-0314 DATA STRUCTURE AND ALGORITHMS FOR RECURSIVELY LOW-RANK COMPRESSED MATRICES

We present a data structure and several operations it supports for recursively lowrank compressed matrices; that is, the diagonal blocks of the matrix are recursively partitioned, and the off-diagonal blocks in each partition level admit a low-rank approximation. Such a compression is embraced in many linearor near-linear-time methods for kernel matrices, including the fast multipole method, th...

متن کامل

Row Compression and Nested Product Decomposition of a Hierarchical Representation of a Quasiseparable Matrix

This research introduces a row compression and nested product decomposition of an n × n hierarchical representation of a rank structured matrix A, which extends the compression and nested product decomposition of a quasiseparable matrix. The hierarchical parameter extraction algorithm of a quasiseparable matrix is efficient, requiring only O(nlog(n)) operations, and is proven backward stable. T...

متن کامل

New constructions of RIP matrices with fast multiplication and fewer rows

In compressed sensing, the restricted isometry property (RIP) is a sufficient condition for the efficient reconstruction of a nearly k-sparse vector x ∈ C from m linear measurements Φx. It is desirable for m to be small, and for Φ to support fast matrix-vector multiplication. In this work, we give a randomized construction of RIP matrices Φ ∈ Cm×d, preserving the `2 norms of all k-sparse vector...

متن کامل

Compressing Rank-Structured Matrices via Randomized Sampling

Randomized sampling has recently been proven a highly efficient technique for computing approximate factorizations of matrices that have low numerical rank. This paper describes an extension of such techniques to a wider class of matrices that are not themselves rank-deficient but have off-diagonal blocks that are—specifically, the classes of so-called hierarchically off-diagonal low rank (HODL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011